14 research outputs found

    Self-Supervised Contrastive Learning for Unsupervised Phoneme Segmentation

    Full text link
    We propose a self-supervised representation learning model for the task of unsupervised phoneme boundary detection. The model is a convolutional neural network that operates directly on the raw waveform. It is optimized to identify spectral changes in the signal using the Noise-Contrastive Estimation principle. At test time, a peak detection algorithm is applied over the model outputs to produce the final boundaries. As such, the proposed model is trained in a fully unsupervised manner with no manual annotations in the form of target boundaries nor phonetic transcriptions. We compare the proposed approach to several unsupervised baselines using both TIMIT and Buckeye corpora. Results suggest that our approach surpasses the baseline models and reaches state-of-the-art performance on both data sets. Furthermore, we experimented with expanding the training set with additional examples from the Librispeech corpus. We evaluated the resulting model on distributions and languages that were not seen during the training phase (English, Hebrew and German) and showed that utilizing additional untranscribed data is beneficial for model performance.Comment: Interspeech 2020 pape

    Self-supervised Speaker Diarization

    Full text link
    Over the last few years, deep learning has grown in popularity for speaker verification, identification, and diarization. Inarguably, a significant part of this success is due to the demonstrated effectiveness of their speaker representations. These, however, are heavily dependent on large amounts of annotated data and can be sensitive to new domains. This study proposes an entirely unsupervised deep-learning model for speaker diarization. Specifically, the study focuses on generating high-quality neural speaker representations without any annotated data, as well as on estimating secondary hyperparameters of the model without annotations. The speaker embeddings are represented by an encoder trained in a self-supervised fashion using pairs of adjacent segments assumed to be of the same speaker. The trained encoder model is then used to self-generate pseudo-labels to subsequently train a similarity score between different segments of the same call using probabilistic linear discriminant analysis (PLDA) and further to learn a clustering stopping threshold. We compared our model to state-of-the-art unsupervised as well as supervised baselines on the CallHome benchmarks. According to empirical results, our approach outperforms unsupervised methods when only two speakers are present in the call, and is only slightly worse than recent supervised models.Comment: Submitted to Interspeech 202

    Audio Language Modeling using Perceptually-Guided Discrete Representations

    Full text link
    In this work, we study the task of Audio Language Modeling, in which we aim at learning probabilistic models for audio that can be used for generation and completion. We use a state-of-the-art perceptually-guided audio compression model, to encode audio to discrete representations. Next, we train a transformer-based causal language model using these representations. At inference time, we perform audio auto-completion by encoding an audio prompt as a discrete sequence, feeding it to the audio language model, sampling from the model, and synthesizing the corresponding time-domain signal. We evaluate the quality of samples generated by our method on Audioset, the largest dataset for general audio to date, and show that it is superior to the evaluated baseline audio encoders. We additionally provide an extensive analysis to better understand the trade-off between audio-quality and language-modeling capabilities. Samples:link

    On The Robustness of Self-Supervised Representations for Spoken Language Modeling

    Full text link
    Self-supervised representations have been extensively studied for discriminative and generative tasks. However, their robustness capabilities have not been extensively investigated. This work focuses on self-supervised representations for spoken generative language models. First, we empirically demonstrate how current state-of-the-art speech representation models lack robustness to basic signal variations that do not alter the spoken information. To overcome this, we propose an effective and efficient method to learn robust self-supervised speech representation for generative spoken language modeling. The proposed approach is based on applying a set of signal transformations to the speech signal and optimizing the model using an iterative pseudo-labeling scheme. Our method significantly improves over the evaluated baselines when considering encoding metrics. We additionally evaluate our method on the speech-to-speech translation task. We consider Spanish-English and French-English conversions and empirically demonstrate the benefits of following the proposed approach

    Simple and Controllable Music Generation

    Full text link
    We tackle the task of conditional music generation. We introduce MusicGen, a single Language Model (LM) that operates over several streams of compressed discrete music representation, i.e., tokens. Unlike prior work, MusicGen is comprised of a single-stage transformer LM together with efficient token interleaving patterns, which eliminates the need for cascading several models, e.g., hierarchically or upsampling. Following this approach, we demonstrate how MusicGen can generate high-quality samples, while being conditioned on textual description or melodic features, allowing better controls over the generated output. We conduct extensive empirical evaluation, considering both automatic and human studies, showing the proposed approach is superior to the evaluated baselines on a standard text-to-music benchmark. Through ablation studies, we shed light over the importance of each of the components comprising MusicGen. Music samples, code, and models are available at https://github.com/facebookresearch/audiocraft
    corecore